

Basic

 Addition

Example 1

do this next start here
Step 1: Work on the column
furthest to the right (add the
digits)
Step 2: Work on next column
to the left (add the digits)
If we had a bigger number we
keep going from right to left
column by column until we
run out of columns

Note: It doesn't
matter whether we put 15 or 24 on the top since adding in any order gives the same result

What happens if the digits of one of the columns add up to more than 9 i.e. if any of our column additions give a two-digit number ? We will see how to deal with this on the next page.

Further Examples
© mymathscloud

$63+82$

Note It is ok here to write two-digits here since it is our final calculation.

$426+395$

$435+977$ ${ }^{1} 4^{1} 35$

?

14. We don't

11 bring 12 bring need to bring the
the 1 up the 1 up

1 up since we are
done

What happens if some of the digits are missing? Fill in any gaps with zeros and add as normal

$213+92$

${ }^{1} 213$

Basic Subtraction

How good you are in mathematics? Me :

Scientist: students need 8-10 hours of sleep a day

School:

"I know it's wrong, I'm just waiting for the autocorrect."

Example $185 \rightarrow 2$

Method

Step 1: Work on the column furthest to the right (subtract the digits)

Step 2: Work on next column to the left (subtract the digits)

If we had a bigger number we keep going from right to left column by column until we run out of columns

4

© mymathscloud

Method

borrow (add) a 10 since 5 is less than 7
steal from the next column (subtract) a 1

This is different to the last example. Why?
For each calculation we
always need a bigger number on top. Here we do not have that for the pink calculation (7 is bigger than 5), so we need to borrow and steal. We always borrow 10 (add 10) for the first calculation and steal 1 (subtract 1) for the next calculation.

5

Method

borrow (add) a 10
steal (subtract) a 1
This time we have to repeat the process:
borrow (add) a 10
steal (subtract) a 1

> This is harder that the last example. Why?
> Since we have to borrow and steal TWICE:
> For each calculation we always need a bigger number on top. Here we do not have that for the pink calculation AND the blue calculation, so we need to borrow and steal.

This is harder than the last example since we are dealing with a 0 when we steal which is a little more confusing:

Method 1

We procced as usual, but here we need to take 1 away from 0 . When we take away 1 from 0 we are basically taking 1 away from 10 and therefore we turn the 0 into a 9. When we make a 0 and 9, we then ALSO AUTOMATICALLY make the next number 1 less.

Method

```
borrow (add) a 10
steal (subtract) a 1
steal (subtract) a 1 again
(since we made a 0 a 9)
```


Example $53400-2246$
 Method 1
 I

© mymathscloud

We take away 1 from 0 we are basically taking 1 away from 10 . We have to ALSO make the next number 1 less each time we change a 0 into a 9 and hence we and do it again

Method

borrow (add) a 10 steal (subtract) a 1 steal (subtract) a 1 again (since we made a 0 a 9)

Method 2

when stealing from a 0 , combine it with the number to the left of it i.e. steal 1 from 40 to get 39
\longrightarrow

Example $63400-2746$

© mymathscloud

This is harder that the last example since we borrow and steal twice:

Method 1

We take away 1 from 0 we are basically taking 1 away from 10 . We have to ALSO make

 the next number 1 less each time we change a 0 into a 9 and hence we and do it againMethod
borrow (add) a 10
steal (subtract) a 1
steal (subtract) a 1 again

We repeat the process: borrow (add) a 10 steal (subtract) a 1 again

Method 2
when stealing from a 0 , combine it with the number to the left of it i.e. steal 1 from 40

Example 7
 $39000-26453$

© mymathscloud

This is harder than the last example since we have successive 0 's. Remember that with 0 's we keep going:

Method 1
We take away 1 from 0 we are basically taking 1 away from 10 . We have to ALSO make the next number 1 less each time we change a 0 into a 9 and hence we and do it again

Method

borrow (add) a 10 steal (subtract) a 1 steal (subtract) a 1 again steal (subtract) a 1 again

4

Method 2
when stealing from a 0 , combine it with the number to the left of it i.e. steal 1 from 900

\square

1
\square

4

Example 8
 $80800-56722$ Method 1

Note: This zero did not becomes a 9 , since we were done after the 8
when stealing from a 0 , combine it with the number to the left of it i.e. steal 1 from 80
Method
borrow (add) a 10 steal (subtract) a 1 steal (subtract) a 1 again

We repeat the process: borrow (add) a 10 steal (subtract) a 1

Method 2

Example 9
 $70300-59722$

 Method 1 \quad Method 2Method

when stealing from a 0 , combine it with the number to the left of it i.e. steal 1 from 30

910

7

Method 1

Method 2

when stealing from a 0 , combine it with the number to the left of it i.e. steal 1 from 7000

EASY Sulbtraction noethod without haviug to borrow

This involves knowing negative numbers and place value!
$85-37$

$$
50-2=48
$$

$435-269$

Step 2:
Do this vertical

Step 3: Do this vertical
calculation
calculation

$202-54$

 202

$3400-2246$

4

0

thousands place so represents 1000
hundreds place so tens place so ones place so represents 200 represents 40 represents 6

$$
1000+200-40-6=1154
$$

Another EASY

subtraction nethod

 without having to boprowThis method involves working HORIZONTALLY and grouping!

$435-269$

$$
\begin{gathered}
435-269 \\
400-200+30-60+5-9 \\
200-30-4 \\
166
\end{gathered}
$$

$3400-2246$

 3400-2246

 3400-2246

 $3000-2000+400-200+0-40+0-6$

 $3000-2000+400-200+0-40+0-6$
 $$
1000+200-40-6
$$
 1154

$$
\begin{gathered}
\text { Another Trick } \\
\text { - Dealing With } \\
\text { Zeros }
\end{gathered}
$$

$5000-2384$

Instead of borrowing as usual like so:

Way 1: Area Model/Grid/Box Method - This method shows clearly what is happening and is is great for understanding, especially for those who prefer a visual understanding as it can be linked to finding the area of rectangles. It also comes in handy in other areas as it is a relatively natural method and can be used to help with expanding quadratics and multiplying polynomials.

Ways 2 and 3: Column Method - Way 3 is very widespread and more likely to be understood by parents and grandparents. It is also a nice algorithmic method that allows space to understand what is going on.

Way 4: The Lattice Method (Napier's Bones/Gelosia Method) - This is great if your main goal is just to get multiplication done, however doesn't do anything to aid understanding. The area model leads to this method. Weaker students like this method as a student who doesn't understand what multiplication is about might be able to reproduce this method and get the answer right every time. The problem is that this take time to set up and does not advance any mathematical concepts (it destroys place value).

Way 5: Criss Cross Method - This is not a very natural method, but it is quick and works for multiplying any n by n multiplication problem.
Way 6: Chinese Stick Multiplication (Line Method/Japanese Multiplication) - This method helps students to think more about what the multiplication of certain digits is providing to the product. Such as the multiplication of a ones digit and another ones digit will provide the ones digit of the product. It's one thing to know how to carry out a procedure (like long multiplication), but this is only useful when a student knows why that method works!

Note: We will look at the Criss Cross Method and
Chinese Stick Multiplication method separately at the end

Area Model/Box/Grid Method

Split/partition the numbers up into their place values
$32=3$ tens (30) and 2 ones (2) which means $30+2$

Method:

For each box we FIRST multiply the number on the top of the box with the number on the left of of the box.

We then add all the numbers in the boxes together.

Way 2

32 7 7

Note: we write 30 and not 3
since 3 is in the tens place

$$
\begin{aligned}
& 2 \times 7=14 \\
& 30 \times 7=210
\end{aligned}
$$

$210+14=24$

Way 3

Way 4

Lattice Method/Napier's Bones/Gelosia

© mymathscloud
Method:
Step 1:
For each box we FIRST multiply the numbers on the top of the box with the number to the far right of the box (7) and THEN split the digits of the number you get from multiplying (this number is shown on top of the diagonal) across the dashed diagonal that divides each box.

Step 2:
Add the numbers in each of the separate diagonal strips
(start on the right). These numbers form our answer (from left to right).

Way 1 Area Model/Box/Grid Method

Split/partition the numbers up into their place values

Method:

For each box we FIRST multiply the number on the top of the box with the number on the left of of the box.

We then add all the numbers in the boxes together.

Method:

Multiply each of the colour pairs and then add the results

$$
6+240+80+3,200=3,526
$$

Way 3
 Long Multiplication (this is just an algorithmic way to do way $1 / 2$
 Step 1
 Step 2

do every multiplication with the pink numbers
(carry if we have a two-digit number, just like with addition)

do every multiplication with the blue numbers
(carry if we have a two-digit number, just like with addition)

always put a zero in
we write
our answers
on the bottom
line
 3526

Without all the colour coding this looks like
© mymathscloud

Note: This example has shown the steps to explain, but you should be able to do just do the $3^{\text {rd }}$ column once you understand the steps

Way 4

Method:

Step 1:

For each box we FIRST multiply the numbers on the top of the box with the numbers to the far right of the box and THEN split the digits of the number you get from multiplying (this number is shown on top of the diagonal) across the dashed diagonal that divides each box.

Step 2:

Add the numbers in each of the separate diagonal strips

(start on the right). These numbers form our answer (from left to right).

Example 3
 612×24

© mymathscloud

Way 1 Area Model/Box/Grid Method

$612=6$ hundreds (600), 1 tens (10) and 2 ones (2) which means $600+10+2$ partition and put here

Method

For each box we FIRST multiply the number on the top of the box with the number on the left of of the box.

We then add all the numbers in the boxes together.
$12,000+200+40+2,400+40+8=14,688$

Way 2

© mymathscloud

$$
\begin{aligned}
& 612 \\
& 2 \times 4=8 \\
& 2 \times 20=40 \\
& 10 \times 4=40 \\
& 10 \times 20=200 \\
& 600 \times 4=2,400 \\
& 600 \times 20=12,000
\end{aligned}
$$

Method:

Multiply each of the colour pairs and then add the results

$$
8+40+40+200+2,400+12,000=14,688
$$

Way 3

Long Multiplication (this is just an algorithmic way to do way $1 / 2$

Step 1
do every multiplication with the pink numbers
(carry if we have a two-digit number, just like with addition)

Step 2
do every multiplication with the blue numbers
(carry if we have a two-digit number, just like with addition)

Without all the extra colour coding this looks like:

© mymathscloud

This example has shown the steps to explain, but you should be able to do just do the $3^{\text {rd }}$ column once you understand the steps

Way 4

Lattice Method

© mymathscloud

 Method:
612×24

2

Step 1:
For each box we FIRST multiply the numbers on the top of the box with the number on the far right of the box and THEN split the digits of the number you get from
multiplying (shown on
top of the diagonal) across the dashed
diagonal that cuts up each box.

Step 2:
Add the numbers in each of the diagonal strips (start on the right). These numbers form our answer
(from left to right).

Let's do another example, but this this time only using the most common method which is long multiplication way. This example is the same as above, except we need to carry more.

This example has shown the steps to explain, but you should be able to do just do the $3^{\text {rd }}$ column once you understand the steps

Without all the extra colour coding this looks like:

200	120,000	4,000	600
30	18,000	600	90
5	3,000	100	15

Method:
For each box we FIRST multiply the number on the top of the box with the number on the left of of the box.

We then add all the numbers in the boxes together.
$120,000+4,000+600+18,000+600+90+3,000+100+15=146,405$
© mymathscloud

Way 3

Long Multiplication (this is just an algorithmic way to do way 1)
do every multiplication with the pink numbers
(carry if we have a two-digit number, just like with addition)

$$
\times 235
$$

$$
\frac{3115}{\Rightarrow}
$$

do every multiplication with the blue numbers
(carry if we have a two-digit number, just like with addition)
do every multiplication with
the purple numbers
(carry if we have a two-digit number, just like with addition)

623
our answers on the
second
line
always put a zero here

Way 4

Method:

Step 1:
For each box we FIRST multiply the numbers on the top of the box with the number on the far right of the box and THEN split the digits of the number you get from multiplying (shown on top of the diagonal) across the dashed diagonal that cuts up each box.

Step 2:
Add the numbers in each of the diagonal strips (start on the right). These numbers form our answer (from left to right).

Let's now look at ways 5 and 6

Criss Cross Method
 and

Chinese Stick Multiplication

> (3) do this last
> $2 \times 1=2$
(2) do this next
(1) start here
$2 \times 2=4$
$3 \times 2=6$

$$
1 \times 3=3
$$

Add these numbers

$$
4+3=7
$$

Method:

We multiply each of these combinations

Way 5

© mymathscloud

Method:

We multiply each of these combinations

© mymathscloud

Method:

We multiply each of these combinations

Way 5 Criss Cross Method 123×231

123 $\times 231$

© mymathscloud

Method:

We multiply each of these combinations

Way 6 Chinese Stick Multiplication 21×32

© mymathscloud

21×32

count the intersections for each colour group

Way 6

Way 6 Chinese stick Multipication 568×976

© mymathscloud

Basic Division

© mymathscloud

$a \div b$ means the same as $\frac{a}{b}$ which is the same as $b \bar{a}$
Notice that the numerator goes underneath the division sign: $\frac{a}{b}=\boldsymbol{b} \sqrt{a}$

$5472 \div 3$

We now work left to right

Step 1: How many times does the number fit into each
digit (each colour)
Step 2: Do the calculation to see what the result is
Step 3: Carry the remainder

$2274 \div 6$

We now work left to right

Step 1: How many times does the number fit into each digit (each colour)

Step 2: Do the calculation to see what the result is
Step 3: Carry the remainder

What happens if

 the numbers arebigger?

Option 1

We make the numbers smaller and more manageable (if possible). How we we do this:
$a \div b$ means the same thing as $\frac{a}{b}$ so we are just simplifying a fraction first and then dividing

$$
2784 \div 32=\frac{2784}{32}=\frac{1392}{16}=\frac{696}{8}=\frac{348}{4}=\frac{174}{2}
$$

87

Option 2

Divide as normal

It is harder to see how many times 32 fits into 278, but it is still doable

What happens if the number

doesnit fit in

exactly?

$6281 \div 8$

© mymathscloud

Option 1

Divide as usual until you reach the end of the number. We write the remainder at the end

785 r 1

Option 2

We put a decimal at the end and carry on by putting zeros for as long as we need (we stop either when the number stops or when we reach our desired accuracy)

785.125

